
Note on the SimSiam objective

1 Notations

We are using similar notations to the SimSiam paper. For a single input image x the model
generates two random augmented views x1 = T1(x) and x2 = T2(x). These views are then
fed into an encoder Fφ parameterized by φ

zi = Fφ(Ti(x)), i = 1, 2

Predictions are produced using a separate predictor network h parameterized by θ

pi = hθ(zi), i = 1, 2

Finally, the loss is computed as

LSimSiam(z1, z2) =
1

2
D(p1,SG(z2)) +

1

2
D(p2,SG(z1)) (1)

where SG is stop gradient operator and D is some similarity measure (e.g., cosine similarity
or L2 distance).

For the subsequent derivations we assume an input image x to be fixed and transforma-
tions T1, T2 are randomly and independently sampled. In this context, view encodings z1
and z2 also become random variables.

2 SimSiam and Mutual Information

We are going to show that minimizing LSimSiam is equivalent to maximizing the lowerbound
on the mutual information between different views encodings z1, z2 of the same image x. In
other words,

ET1,T2 [LSimSiam] ≥ constant− I(z1, z2) (2)

which becomes tighter as the predictor hθ becomes optimal. This makes the training ob-
jective very similar to the Contrastive Predictive Coding or InfoNCE (or, SimCLR in a
context of images).

First, let Q(·;µ) be a probabilistic distribution over view encodings parameterized by
some µ. Then,

D(hθ(z1), z2) = − logQ(z2;µ = hθ(z1)) (3)
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for an appropriate choice of Q. For example, when D is L2 distance then Q is multivariate
Gaussian distribution with an identity covariance and mean µ.

Our first observation is that Q(·;µ = hθ(z1)) is trained1 to approximate P (z2 | z1), since
the objective function is a cross-entropy between these two distributions. More formally,
consider the expected loss conditioned on a known z1

ET2
[
D(hθ(z1), z2) | z1

]
= ET2

[
− logQ(z2;µ = hθ(z1)) | z1

]
= ET2

[
− logQ(z2;µ = hθ(z1)) + logP (z2|z1)− logP (z2|z1) | z1

]
= ET2

[
− logP (z2 | z1)

]
+DKL(P (z2|z1) || Q(z2;µ = hθ(z1))

≥ ET2
[
− logP (z2 | z1)

]
(4)

where the inequality becomes more tight when Q(·;µ = hθ(z1)) approximates P (z2 | z1)
better, which happens when parameters θ are closer to optimum. This corresponds to the
empirical evidence by SimSiam and follow up papers that the model benefits from the
predictor hθ being optimal – for example by making several gradient updates or using higher
learning rate just for θ.

If we take expectation with respect to the T1

ET1,T2 [D(p1, z2)] ≥ ET1,T2
[
− logP (z2|z1)

]
= ET1,T2

[
− log

P (z1, z2)

P (z1)

]
= ET1,T2

[
− log

P (z1, z2)

P (z1)P (z2)
− logP (z2)

]
= H(z2)− I(z1, z2) (5)

Finally, we can subtitute it back to the LSimSiam and add SG operations

ET1,T2

[
1

2
D(p1,SG(z2)) +

1

2
D(p2,SG(z1))

]
≥ 1

2
H(SG(z1)) +

1

2
H(SG(z2))

− 1

2

(
I(z1,SG(z2)) + I(SG(z1), z2)

)
=

1

2
H(SG(z1)) +

1

2
H(SG(z2))− I(z1, z2) (6)

where we can treat H(SG(z1)) and H(SG(z2)) as constants because of the SG operations.

1meaning that the predictor hθ is being optimized
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